Structure
The MSc (Mathematics for Educators) programme offers a range of courses in both pure and applied mathematics. Students are required to complete:
- one core course
- seven courses
Students may take no more than three foundation courses in fulfilment of the graduation requirement.

Core Course
- Mathematical Research Methods

Foundation Courses
- Calculus and Analysis for Educators
- Ring Theory for Educators
- Discrete Mathematics for Educators
- Computing and Programming Techniques for Educators
- Statistical Theory for Educators

Advanced Courses
- Real Analysis
- Theory and Applications of Differential Equations
- Topology
- Euclidean and non-Euclidean Geometry
- Contemporary Topics in Analysis, Geometry and Topology
- Number Theory
- Commutative Ring Theory
- Topics in Applied Algebra
- Group Theory
- Contemporary Topics in Algebra and Number Theory
- Selected Topics in Graph Theory
- Algorithms and Applications in Graph Theory
- Numerical Mathematics and Applications
- Large Scale Systems in Operations Research
- Contemporary Topics in Applied Mathematics
- Models of Computation
- Multiple Linear Regression
- Multivariate Methods
- Mathematical Inquiry
A Master with a Difference

The Master of Science (Mathematics for Educators) programme is a coursework programme designed to provide rigorous training in advanced mathematics to mathematics teachers and other professionals. This programme differentiates itself from others in that the acquisition of wide and in-depth knowledge in mathematics is emphasised along with its connection to mathematics teaching.

A strong mastery of mathematics will enable a mathematics teacher to teach better and to promote higher order thinking among mathematics learners. Education specialists in mathematics will also benefit from this programme because a good understanding of mathematics is essential for work such as the designing of contemporary and relevant curriculum, assessment of mathematics learning, and development of teaching resources.

In this programme, Foundation courses attempt to connect higher mathematics with school mathematics, and provide the foundational knowledge needed for the Advanced courses. Advanced courses are targeted to bring their learners to another higher level of learning by developing their expertise in a number of specialised fields in mathematics. The core course, Mathematical Research Methods, equips students with a set of very important skills specifically needed to perform mathematical research work. Students who wish to further their learning experience in research mathematics may choose to read the elective course, Mathematical Inquiry, to implement those mathematical research methods acquired earlier from the core course.

Duration of Study
The programme may be completed in two to four years on a part-time basis, and one to three years on a full-time basis.

Entry Requirements
Applicants should have either a:
- Bachelor of Science with Honours degree, or equivalent, in a relevant discipline,
- Bachelor of Science degree, or equivalent, in a relevant discipline, with at least one year of professional working experience.

International applicants whose first language is not English and graduates of universities with non-English medium of instruction are required to submit an official Test of English as a Foreign Language (TOEFL) or International English Language Testing System (IELTS) score. These tests dates must be no more than two years before the date of application.

Application
Applications may be made online. Hard copies of all supporting documents must be submitted within one week from the date of successful online submission.

For more information on application details, please visit www.nie.edu.sg/gpi/appl_course.htm.

Further Queries
For more information, please visit math.nie.edu.sg/programmes/MSc4au or e-mail us at mscmath@nie.edu.sg.

What our student says about the programme:
This programme has been very beneficial because it gave me a deeper conceptual understanding of the topics that I am currently teaching. There is a variety of courses, and courses such as Topics in Applied Algebra, Theory and Applications of Differential Equations widen our knowledge on how mathematics can be applied into a real world situation. The contents taught allowed us to relate to the level that we are teaching in school, and it gave us a good platform to apply what we have learnt to stretch our students’ ability in Mathematics.

The lecturers of the programme are very patient, helpful and flexible. This is especially important for us as managing time between study and teaching is not exactly an easy task.

Yeo Chiu Jin
Teacher, Temasek Junior College